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G E N E R A T I O N  O F  T H R E E - D I M E N S I O N A L  B E N D I N G  V I B R A T I O N S  

O F  A F L O A T I N G  E L A S T I C  P L A T E  IN  M O T I O N  O F  A C O N C E N T R A T E D  L O A D  

A L O N G  A C O M P L E X  T R A J E C T O R Y  

A. E. Buka tov  and  V. V. Zharkov  UDC 532.593:539.3:624.131 

We study three-dimensional bending vibrations of a thin elastic plate which are excited by a 
concentrated load upon the motion of this plate in a circle whose center shifts rectilinearly with constant 
velocity. Analysis of the plate vibrations versus its bending rigidity, the angular velocity of loading, and the 
velocity of the center of its t rajectory is given. 

The structure of three-dimensional bending gravity waves excited by a constant and variable-intensity 
load moving rectilinearly over the surface of a floating plate has been studied in [1-5] and [6], respectively. 
Vibrations of a plate with a load moving in a circular trajectory have been studied in [7]. 

1. Let a thin elastic isotropic plate float over the surface of an ideal uniform incompressible liquid 
with a constant depth  H. We shall consider three-dimensional bending vibrations of the plate excited by a 
concentrated load 

p = po~(x - zo)~(y  - yo), xo = vt  + rcos(wt  + r yo = rs in (wt  + ~o), (1.1) 

which moves with constant  angular velocity w in a circle of radius r whose center shifts rectilinearly with a 
constant velocity v. At zero momen t  (t = 0), the load is applied at the point (r cos~0, r sin~o0) of the circle. 

Assuming the mot ion  of a liquid to be potential  and the wave velocities of its particles and the 
amplitudes of continuous vibrations of the plate to be small, we reduce the problem to the solution of the 
Laplace equation 

A ~ = 0 ,  - H < z < 0 ,  - o o < x , y < c ~  

with the boundary conditions 

D 1 V 4 (  + a~l(u + ( + r  = - p l ,  

and the initial conditions 

Here 

(1.2) 

~t=~z ,  z = 0 ,  ~ z = 0 ,  z = - H  (1.3) 

e ( x ,  y, z, 0) = r  y, 0) = 0. 

Eh  3 . V 2 _  O 2 02 O 2 
1 2 ( 1 - v 2 )  ' - Ox 2 + Oy 2; A = V 2 + 0 z 2 ,  { D l , m l , p l }  = {D,  ae, p } (pg ) - l ;  D = 

(1.4) 

V 4 ----- (V2)2; ~ ~-- plh; E,  h, Pl, and v are, respectively, the elasticity modulus,  thickness, density, and 
Poisson's ratio of the plate, respectively; p is the liquid density, and ~ is the velocity potential of motion of 
a liquid particle. 

To solve problem (1.1)-(1.4), we apply a complex Fourier transform in variables x and y and satisfying 
the boundary conditions in a coordinate system with the origin at the center of a circular trajectory, and we 
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obtain the equation 

+ ikvcosO + ~.2 C* = (2;r)-lT2P~ e x p ( - i r k c o s a ) ,  (1.5) 

where r~ = (1 + ae, kg tanh  k H ) - l k g  tanh kH,  r 2 = ro2Oo(k), Do = D,k  4 + l, k 2 = k 2 + k 2, ~ = w t  + ~ 0 - 0 .  
k~ = kcos0 and ky = ks in0  are the variables of the Fourier transform, and (* and p~ are the Fourier 
transformants of ~ and pl, respectively. 

Using the known expansion of the function e x p ( - i r k  cos a)  into a series of the Bessel functions [8] 
and satisfying the initial conditions written in polar coordinates, for plate bending (rise of the plate-liquid 
surface), we have the relation 

3x/2  cr 1/ /= 
~ = 4~r2 ~ B(k~,ky)(M1 + M2)exp(iA)dkdO. (1.6) 

-7r/2 0 n=0 

Here 

M, = Sl i t  cos(ha) - N, exp(-ikvtcosO)]; M2 = iS2[~'sin(na) + N2exp(- ikvtcosO)];  

Ul = r cos(rt)  cos(n0) + [ikv cos 0 cos(n0) + nw sin(n0)] sin(vt); 

N2 = r cos(rt)  sin(n0) + [ikv cos 0 sin(n0) - nw cos(n0)] sin(rt); 

$1  = 7 -2 - -  (kl )  c o s  0 )  2 - ( n w ) 2 ;  $2 = 2nwkv cos 0; 

B = i"[Do(S21 - S~)] - l (2 -6n ,o)J , (kr )kvp; ;  )t = k R c o s ( O - 7 ) ;  R = (x 2 + y2)1/2; 

x = R cos 7, Y = R sin 7, and &,,0 is the Kronecker symbol. 
On the path of integration over 0, there can be singularities at the points 0 = OIn (l = 1 ,2 , . . .  ,8), 

where Oln = a r c c o s  r ln ;  02,= = -01 ,*;  O3n = l r -  0in; 04,* = l r +  Oxn; Osn = a r c c o s  r2n; 06,* = - O s . ;  Or.  = ~ r -  05 . ;  
0S .  = a" + 0S,; 7"s,* = ( k v ) - l [ r  + (-1)Snw] (s = 1 and 2). 

The poles 0t, (I = 1 , . . . ,  4) lie in the interval [-~ ' /2,  3a'/2] of the real 0 axis if -r~, <~ 1. Under this 
condition, the wave number k varies in the interval (kl, k2) if one of the inequalities 

nw/>o'0, v~<v0h v/>v02 (1.7) 

is satisfied. If 

nw < ~o, vol < v < v02, (1.8) 

to the condition rl~. ~ 1 correspond two intervals of variation in the wave number: (k,,  k~) and (k~, k2). 
The real poles Oln (l = 5 , . . . ,  8) exist on the 0 axis for such r~n ~ 1 if 

v/> v03. ( 1 . 9 )  

With satisfaction of (1.9), the wave number k varies in the (k3, k4) interval. In the case where v < v03, 
the poles on the real axis 0 are absent for any real k, because r2,, > 1. If n = 0, for 7"22, ~< 1, and v > c, then 
k3 = 0. Here ~0 = [~27"(~I) -~Ir (~2)] (~2-~I)  - I ,  VOl = v7"i,,(~2), c = (gH) I/2, v02 = w'In(~i),  v03 = v~'2n(~3), 

~'l',,(/Ti) = ri ',,(/72 ) = r2" ( /73)  = 0, 7-*. - n , ,  - T, (s = 1, 2) ,  Tx = ( l l v )OT lOk ;  k l ,  k{,  k; ,  and  k2 are the 
positive roots of the equation rx, = 1, and ]r (if n # 0 or n = 0, v <~ c) and k4 are the roots of the equation 
"r2,~ = 1. 

Let us choose the bypasses of the poles 0t,, in the complex plane in such a way that the inequality 
R e ( - i v k t  cos 0) < 0 is fulfilled. This ensures the damping of Nx and N2 and the appearance of a periodic-in- 
time wave picture that is characterized by integral (1.6). Since v, k, and t are positive, we shall bypass 01,, for 
an odd, from above, and even, from below, value of 1. The integration contours obtained are denoted by Lm,, 
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and Eq. (1.6) is written in the form 

2 co 
r = (871"2) -1 Z Z (  llmn -- [2mn) + O ( R - I ) ,  

rn=l n=0 

I lmn= f f Bmn(k,O)rexp[i(,k-(-1)"nc~)]dkdO, 
Lmn L~nn 

I2mn= f f Bmn(k,O)N*exp[i(A-kvtcosO-(-1)mna)ldkdO,  (l.10) 

Lmn L~nn 

N* = r cos(rt) + i[kvcosO + ( -1)mn~]  sin(rt), 

Bran = in(2 -- 6,,0)DoI[Si m -1 �9 - ( - 1 )  &] g.(kr)kTpl, 

where the contours Lln bypass the poles Otn (l = 3, 4, 5, and 6), while L2n bypasses the poles Oln (l = 1, 2, 7. 
and 8). The integration over the wave number is performed along the intervals L~n of the real k axis which 
are the domains of definition of the poles 0in upon satisfaction of conditions (1.7)-(1.9). 

We shall supplement the contours Lm, to make them closed with allowance for the conditions 

Re [i(A - (-1)mnO)] <<. 0, Re [i()~ - kvtcosO - (-1)mn0)] <~ 0, 

that ensure the boundedness of the intervals Iim. and I2mn at R ~ cx~. For fixed m and n, each of the closed 
contours obtained contains the same poles if sign[kR sin(0 - 7 )  + ( - 1 )  ran] = sign[kR sin(0 - 7 )  + ( - 1 )  m n -  
kvt sin 0]. 

This equality is satisfied if R > R,nn + Ut or R < R,nn - Ut, where Rmn = (-1)m+ln/[ksin(O - 7)] 
and U = v I s i n 0 / s i n ( 0 -  7)1. Under these conditions, Ilmn and I2mn compensate for each other with accuracy 
up to perturbation damping with distance as O(R-1).  The residues in the corresponding poles Otn represent 
the periodic wave motion in the regions 0 <~ R <<. Rmr, + Ut if t >/ t .  = n/(kvlsinO]) and in the regions 
Rmn - Ut <~ R <~ Ran + Ut if Rm. >1 0 and t < t . .  Thus, the quantity U = Urn is the velocity of the leading 
front of perturbations characterized by the pole 0 = Oln. 

Applying the residue theorem, from (10) we obtain 
oo 

r =/s + ~"~ (K1. + / 4 2 . )  + O(R-1),  (1.11) 
n----i 

where, for fixed n, the expression for Kin has the form 

k* 4 k2 4 1 k2 

=Xkl 1=1 kl k~ 

provided that conditions (1.7) and (1.8), respectively, are satisfied. If v < v03, then K2n = 0, and under 
condition (1.9) 

8 k4 

K~. = ~ f at*~(k)dk. 
/=5 k3 

Here 

{ a t . ( k ) ,  
ate(k) = O, 

. { a t . (k) ,  
a t . (k)  = o, 

01.(k) - ~ + x . ( k )  < 7 < 01.(k) - xn(k), 
0in(k) - Xn(k) ~ 7 ~ 0in(k)  + ~ + Xn(k) for 

-01 . (k)  - Xn(k) < 7 < ~ - 01.(k) + x.(k) ,  
r - 01.(k) + x. (k)  ~ 7 ~ 2z - 01.(k) - x~(k) 

l = l, 4; 

for l = 2, 3; 
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T A B L E  1 

l j m 

1 I 2 
2 2 2 
3 2 1 
4 1 i 

s l j m 

I 5 1 1 

1 6 2 1 

1 7 2 2 

I 8 l 2 

. ( a t . ( k ) ,  o s . ( k )  - ~ - x . ( k )  < 7 < o s . ( k )  + x . ( k ) ,  
G t n ( k ) = .  O, 0 5 . ( k ) + x . ( k )  <<.3 '<~05n(k )+r -x . ( k )  for I = 5 ,  S; 

* I Gtn(k), -05n(k)  + xn(k) < 7 < rr - 05n(k) - xn(k),  
Gin(k) = . O, r - 05n(k) - xn(k) <~ 7 <~ 2rr - Osn(k) + Xn(k) for l = 6, 7; 

arcsin(n/(kR)),  k > n /R ,  )-1 
xn(k)  = ~r/2, k <~ n/R; Gt.(k)  = (8rr 2 k~t.(k)J.(kr) exp [i~bt.(k)]; 

f t . ( k )  = kR cos(0l.  - 7) + ( -1)mn[wt  + ~o + (--1):Ob.] + n0r /2 ;  ~ t . ( k )  = (2 - a. ,o) (Do~.v) - l rp~;  ~ .  = 
(1 - rs2.)l/2; no = n + [ ( - 1 ) "  + 1](s - m + 1) + 1; and b = 4s - 3 for l = 1 , 2 , . . . , 8 .  

To the value l of the  pole 01. correspond j ,  m, and s from Table 1. 
Using the asympto t i c  representa t ion  Jn(kr) ~ (2 /rkr)  1/2 cos(kr  - nr /2  - 7r/4), we write  the expression for 
Gt. in the form 

[( ( 8 ~ 2 V N - g ~ l . ( k )  ~ exp i ~i.(k) + ( - 1 ) ,  ,-k - . ~  - 
q=l 

and analyze integrals (1.11) by  the  s ta t ionary-phase  method .  As a result ,  for the  ampl i tude  of per turbat ions  
along the constant -phase  curve,  we obta in  the  expression 

A(k) = (2 - 8..o)rp~ [kT"*no'*n] 1/2 
~-r2-~b-~0 [r lZ(&)l  ] , (1.12) 

and write the equat ion  for the  constant -phase  curve as 

z(k)  = [(1 - rsnrl)p + ~; . r / ] (k r ; . )  -1,  y(k) = ( - 1 ) J ( r 1 ~ ; . #  + rsnrl)(kr;n) -1. (1.13) 

Here 

p = (--1)Snqo, -- (-1)qkr + 7r~o2; rl = ( - 1 ) q  krcr:n - (--1)SnT~n; 

q01 = tot + qo0 + (--I) j arccos Ts.; ~2 = 2(N - n*) + ~o + [(-l)q(n + I/2) + no]/2; 

z(k) = ~ ; . z , ( k )  + ~z2(k) - ( - 1 ) ' ~ : . z 3 ( k ) ;  z,(k) = ~2t'~*,.j'2 + ~ , ( ~ . )  ; .  2 

Z2(k) r~cr* ~2 �9 2. * - 2t . . )  ; r 2 = -  ; = 2t . .1  + r , . ( r , . )  , Za(k) = [r , . (r , .  + r l ) - 2 ] r , .  ~, 'or* ,2 k 02r 
v Ok 2 

k varies on the intervals of definit ion of the poles 01. which correspond to conditions (1.7)-(1.9) and to which 
s and j from Table 1 correspond;  N is the number  of the  curve considered from the coordinate  origin, rr{0 is 
its phase shift de te rmined  by the sign of Z(k),  n* is an integer of n/4, and q takes on the values 1 or 2. 

2. An analysis of the  solut ion obta ined has shown that  the s t ructure  and character  of the  excited 
periodic wave mot ion is main ly  de te rmined  by the bending rigidity of the plate and also by the angular and 
translational velocities of load displacement .  

For each fixed mode  with number  n, there exist seven critical values of the velocity of translational 
motion of the load (v01, vo2, v0a, vl0, vii,  v12, c) and one critical angular frequency or0, in passing through 
which the character  and s t ruc tu re  of the periodic per turba t ions  change. Among them, the quanti t ies  cr0, v01, 
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v02, v03, and c are the same as in (1.7)-(1.9), and, for vl0, v~,  and v~2, the formulas 

vii = v{r3(/34)] 1/2, vl2 = v[r4(/36)] 1/2, 

" 
= = 02( '6) = 

< 

are valid (the primes denote the derivatives with 

v l 0  = v i e s ( Z 8 ) ]  : - - 

, = _ _ r6( 8) = = 0 ,  

= 0 ,  O (k) = - -  - 1  = l ,  2 ) ,  

respect to k). 
Depending on the generation conditions, from one to seven (i* = 1 , . . . , 7 )  pairs (q = 1 and 2) of 

wave systems can be excited; i* = 1 and 5 corresponds to the transverse gravity and i* = 2 and 6 to the 
longitudinal gravity waves of the ship-borne type. The waves with i* = 3 and 7 are bending and are due to 
the plate rigidity, while i* = 4 corresponds to the system of a helix-shaped form which are due to the angular 
velocity of pressure displacement. In (1.13), i* = 1 , . . .  ,4 corresponds to s = 1, and i* = 5 , . . .  ,7 corresponds 
to s = 2. For the crests of transverse gravity, bending, and helix-shaped waves, ~0 = - 3 / 4 ,  and, for those of 
longitudinal gravity waves, ~0 = - 1 / 4 .  

In the wave pattern,  to the boundaries of the angular zones of the wave systems correspond the caustics 
along which the amplitudes drop according to the law R -1/3.  They can be found using the break points of 
the constant-phase curves which occur at Z ( k )  = 0 and correspond to a transition to a new system. With 
distance from the load, in the region R/> r the opening angles of the zones of wave perturbations which are 
due to the subsystems q = 1 and 2 of each pair i* approach asymptotically the quantities 72 = arctanOl(a2),  
"711 = arc tane2(a3) ,  722 = arctanO2(a4), ")'1 = a rc tanOl (a l )  for vii < v < V02, "/3 = arc tanOl(a l )  for 
v > v02, and 712 = arctanO2(0) for n w  = 0 and v > c; O~(c~1) = e~(a2) = O~(a3) = O~(cz4) = 0, where 

Oq < O~ 2, O~ 3 < O~ 4. 

Their correspondence to the number of i* is shown in Tables 2 (s = l) and 3 (s = 2) that characterize 
the phase structure of wave perturbations in the region R />  r. 

The quantities "Yl, "Y2, 73,711, and "Y22 that characterize the angular zones of the steady perturbations 
which are due to the n mode and the displacement velocities v01, v02, v03, Vl0, v11, and v12 of the load depend 
on nw in the same way as on the pulsation frequency a of a translationally moving source of variable intensity. 
This dependence was studied by Bukatov and Yaroshenko in [6]. In addition, for a = m~, the dependence of 
the indicated quantities on the characteristics of the plate was considered. 

3. The phase structure of perturbations which are due to each pair of excited wave subsystems of the 
first and second modes was analyzed on the basis of expressions (1.13) for E = 3 �9 109 N. m -2, u = 0.34, 
and pl = 0.87.103 kg- m -3 that  characterize an .icy plate [9, 10l. Here the depth of a reservoir is 103 m, the 
thickness of the ice cover is 2 m, and the water density is 103 kg. m -3. The radius of the trajectory of load 
displacement is r = 102-103 m, its translational velocity is v = 10-1-40 m.  sec -1, and the angular velocity 
w = 5 �9 10-2-10 -1 sec -1 for ~o0 = 0 at different stages of the oscillation period. The translational motion of 
the load occurs in the negative direction of the x axis, and its rotary motion occurs clockwise. 

An analysis has shown that,  for the v values satisfying the inequalities v01 < v < v02 and n w  < ao or 
Vll < v < c and n w  > 0, the structure of the generated wave perturbation is a superposition of seven wave 

subsystems. 
Their wave patterns are illustrated in Figs. 1-3 for v = 40 m.  sec -1, w = 5.  [ 0  - 2  sec -1, r : 3 -  10 2 m ,  

and the phase of load rotation ~r. These figures show the constant-phase (crests) curves of the helix-shaped 
[i* = 4 (Fig. 1)], transverse gravity, longitudinal ship-borne, and bending waves [i* = 1 , . . . ,  3 (Fig. 2) and 
i* = 5 , . . . ,  7 (Fig. 3)] of the first mode. The thick and thin curves refer to q = 1 and 2, respectively. The 
solid curves in Figs. 2 and 3 show bending waves, and the dot-and-dashed curves with one and two dots 
show longitudinal and transverse gravity ones of the ship-borne type. The bounds of the angular zones of the 
corresponding subsystems are shown by dashed curves. The dotted curve in Figs. 2 and 3 shows the trajectory 
of circular pressure displacements in the coordinate system connected to its center. The circle at the center 
of Fig. 1 also refers to this trajectory. 

It is seen that the crests of helix-shaped waves originate at points half a wavelength away from the 

479 



TABLE 2 

v 

0 <  v <  rot 

vOl < v < v i i  

v i i  < v < '002 

V02 < v < vlo 

v > r i o  

0 < 7.1 < ~Jll 

> Vll 

3'(+2~r) i" 

0 4 7 4 2 ~ r  4 

0 4 7 4 2 ~ "  3 ,4  

-72 < 3 ' < 7 2  1,4 

-3'1 4 3' 4 -72, 1, 2, 

72 4 3' 4 3'1 3,4 

71 < 3 ' < 2 7 r - 7 1  3 ,4  

-3'2 < 3' < 72 4 0 < nw < go 

--3'3 4 "7 4 --3'2, 2, 3, 

3'2 4 3' 4 73 4 

7 3 < 7 < 2 r - 3 ' 3  3 

--3'2 < 7 < 3'2 1 

-71 4 3' 4 -3'2, 1, 2, 

72 4 7 4 3'1 3 

3'1 < 3 ' < 2 ~ ' - 7 1  3 

0 4 7 4 2 7 r  4 

--72 4 3 ' 4 3 ' 2  4 

--33 4 3' 4 - -72,  2, 3, nw > ao 

3"243'43 '3 4 

73 < 7 < 2x -- 3'3 

TABLE 3 

v -r(+27r) 

v <  vo3 0 4 7  42~" 

v o 3 < v <  v12 0 4 3 '  427r 

--722 < 3' < 722 

v12 < v < c 

v > c  

-3'11 4 7 4 -3'22, 

722 4 3' 4 3'n 

3'11 < 3' < 27r - 711 

--722 4 7 4 722 

--711 4 7 4 --722, 

722 4 3' 4 3'11 

3'11 < 3' < 21r -- 3'11 

-3'12 4 7 4 712 

-3'11 4 3' 4 -3"12, 

3'12 4 3' 4 3'11 

711 < 3' < 2~r - 711 

7 

5 

5, 6, 

7 

7 

5 

5, 6, 

7 

7 

n ~ > 0  

n w  > 0  

6 , 7  n w = O  

pressure-displax:ement trajectory. The crest number increases with each turn of the helix. The wavelengths 
are approximately equal for both subsystems. Note that they are minimal on the abscissa before the load 
and maximal behind it. The minimal wavelength exceeds substantially the radius of the circular trajectory 
of load motion. In addition, the lengths of helical waves depend weakly on this radius. The difference in the 
wavelengths in front of or behind the loads is determined by the translational velocity of its motion. The 
difference decreases as the velocity drops to zero. The system of helical perturbations is generated at any 
value of the velocity within the interval 0 ~< v < Vl0 if n w  < cr0 and within the interval v t> 0 if nw < or0. 

Note that  gravity waves of the helical type are excited in a free-surface fluid under the motion of a 
perturbation source in a circular t rajectory [11, 12]. 

The systems of bending, longitudinal, and transverse gravity waves of each of two subsystems form 
two superimposing patterns, which are similar to the known ones from [1, 2, 4] for a translationally moving 
generator of constant intensity. This is true for s = 1 and 2 (Figs. 2 and 3). The ranges of wavelength variation 
of either subsystems are equal. The bending waves have a minimal length, and the transverse gravity ones have 
a maximal one. The angular zones (where perturbations are generated) which are due to the joint contribution 
of the systems of bending, longitudinal, and transverse gravity waves are considerably smaller at s = 2 than 
a t s =  1. 

Unlike the case of a translationally moving load, asymmetry of the phase patterns relative to the line of 
displacement of the center of its t rajectory is observed. This is especially noticeable in the shapes of the crest 
of gravity transverse waves and also in the position of the vertices of the angular three-wave perturbation 
zones. 

For subsystems with q = I (thin curves), the bending waves-precursors border the circular trajectory 
before loading. The angular three-wave perturbation zones behind the load intersect, passing through the 
abscissa axis. The first crests of gravity transverse waves are formed only behind the region of intersection of 
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Fig. 1 Fig. 2 

2 3 
y'ld 3 m 

o. I (~'%_ i:t i~ li 

-0.5 0.5 1.5 2.5 x ' l g  3, m 

y-ld 3 m z-J. ~ -. / . /  
s -1 IV ~ ' <  . /  
I / / . I X  " ~  ~ J -  
I / I -/-'" "'\-/~--~ 

/ / /  . /  . - ~ .  
/ . ~ ' /  , "" 

' V \ '  ' " 3 5.5j-",~.'5,.\ ,Ix'Id .m 

-X. 

Fig. 3 Fig. 4 

the angular zones. For subsystems with q = 2 (thick curves), the crests of the bending waves can either enter 
the t ra jec tory-bounded  region or be positioned in front of this region. In this case, the first constant-phase 
curves inside this region can break and intersect the z axis behind it. The angular  three-wave per turbat ion 
zones do not cross each other.  Their  vertices are far from the load, and the opening angles in the zone 
considered are smaller than  those for q = 1. In this case, the zone of generat ion of transverse ship waves is 

considerably wider as compared with the q = 1 case. 
Note tha t  the  number  of broken crests of bending waves increases with increasing r. For fairly large r, 

the first crests of the  transverse gravi ty waves can also be broken. A change of ~,t gives rise to phase shifts in 
each wave subsystems considered. 

The first crest of a gravi ty transverse wave from the subsystem with q = 2 becomes the crest of a 
bending one, bypassing the  vertices of three-wave per turbat ion generation zones (Fig. 3). Such zones narrow, 

and their vertices become more dis tant  as the velocity v diminishes to the critical v n  (s = 1, Fig. 2) or 
v12 (s = 2, Fig. 3). The  number  of crests of transverse gravity waves which become crests of bending 

waves increases as well. All wave crests behind the load in the velocity range v01 < v < vii  (s = 1) or 
vo3 < v < v12 (s = 2) have a quali tat ively similar shape. For such values of v, there are no three-wave 
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TABLE 4 

Variant i" 

1 

2 

3 

I 

2 1 

2 

3 1 

II 2 

4 1 

2 

7, deg 

20 40 120 

A ( k ) .  lO/pl (A,m) 

0.99 (1890) 

1.o2 (188o) 
3.27 (704) 

3.53 (354) 

- -  1.57_ (78.7) 0.43_ (39.0) 

3.18+ (129) 

2.13_ (101) 1.30_ (71.9) 0.40_ (38.5) 

0.10 (14710) 0.13 (11430) 0.14 (7500) 

0.01 (17480) 0.01 (17310) 0.16 (7930) 

1.76+ (103) 1.52_ (78.9) 0.44_ (39.4) 

3.16+ (128) 

2.53_ (95.8) 1.31_ (72.0) 0.41_ (38.8) 

2 . 0 6  (670) 1.53 (1510) - -  

3.46 (340) 

1.51_ (78.2) 0.41_ (38.8) 

2.26_ (100) 1.30_ (71.3) 0.39_ (38.3) 

0.40 (7180) 0.43 (5860) 
0.05 (8270) 0.07 (7700) - -  

1.95+ (101) 

3.12+ (127) 

1.55_ (79.1) 
1.36_ (72.2) 

0.44_ (39.6) 
0.42_ (39.1) 

perturbation zones. As the velocities increase to v01 (s = 1) or v03 (s = 2), the wave crests straighten in the 
direction perpendicular to the curve. For v < v01 or v < v0a, the bending and gravity waves corresponding to 
s = 1 or s = 2 do not contribute to perturbation formation. 

If v02 < v < vx0 and n w  < ao or v > v n  and n w  > a0, there is no contribution from ship-type 
transverse gravity waves to the formation of perturbations corresponding to s = 1. Only bending waves can 
be excited before loading in this case. In the wave wake, angular zones are formed in which the perturbation 
structure is formed by helix-shaped waves either along with longitudinal and bending waves or without them. 

Figure 4 shows the phase picture under the conditions considered for the values of the parameters 
which correspond to Figs. 1-3 for w = 10 -1 sec -1. The crests of the helix-shaped waves are shown by the 
dot-and-dashed curves with two points. The crests of the bending (solid curves) and transverse gravity (dot- 
and-dashed curves with one point) waves are shown through one crest. Evidently, the angular zones of three- 
wave perturbation generation for both subsystems (q = 1 and 2) are larger than those for the other velocity 
ranges considered. The curves of the first crests of helix-shaped waves cannot reach one of the bounds of the 
corresponding angular zone. The characteristic features of the subsystems with q = 1 and 2 are qualitatively 
the same as for the conditions of Figs. 2 and 3. 

If v > v10, and n w  < or0, helix-type waves are not excited, and the phase pat tern for s = 1 is similar 
to that shown in Fig. 2. 

In the velocity ranges considered, the phase structure of the perturbations corresponding to s = 2 is 
qualitatively the same as that for the v values from other ranges (see Table 2) which correspond to s = I. 

The phase patterns of perturbations which are due to the first mode with frequency nw are similar to 
those formed by the mode with number n with frequency w. 
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4. A quantitative comparison of the possible contributions of the generated waves to the bending 
oscillations of the plate was performed using formulas (1.12) and (1.13) for the values of the starting parameters 
corresponding to the conditions of Figs. 1-3 (variant I) and Fig. 4 (variant II). In Table 4, the amplitudes 
A(k) of bending that is due to each of the wave systems q of the systems i* are given with accuracy up to the 
factor lO/pl for three fixed points of the plane on the right from the path of motion of the load-trajectory 
center. These points are 5 km away from the origin of coordinates along the rays which constitute the angles 
7 = 20, 40, and 120 ~ respectively, with the x axis. The plus sign refers to the amplitudes of the subsystems 
of bending waves (i* = 3 and 7) with q = 1 and 2 for which the constant-phase curves begin at the bound of 
the corresponding angular wave-wake zone, and the minus sign refers to bending waves with constant-phase 
curves which either border (in a moving coordinate system) the circular trajectory of load displacement (for 
q = 1 and 2) or enter inside the circle limited by this trajectory (for q = 2) (the local values of the lengths of 
the corresponding waves A = 2~r/k are given in brackets). A line indicates the absence of an appropriate wave 
system at the point under consideration. In addition, we note that there are waves corresponding to i* = 5. 
6 for variants I and II and to i* = 1 for variant II at these points. 

From the data in Table 4, it is clear that the plate-oscillation amplitudes due to bending and ship gravity 
waves are comparable, at the chosen points, with each other in order of magnitude despite the appreciable 
differences in the local values of these wavelengths. Here the effect of the helical waves on bending of the plate 
is less significant. However, the phase pattern of oscillations deforms as the generation conditions vary, and, 
hence, the contributions of the excited waves to plate bending at a fixed point redistribute. We should recall 
that, for v < rain(v01, v03), oscillations are formed only by helical waves. 

This work was partially supported by the Joint Foundation of the Ukrainian Government and 
International Science Foundation (Grant No. K31 100). 
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